

Preliminary results on superconducting V-shaped artificial atom readout

Olivier Buisson Institut Néel, Grenoble, France

• Frank Hekking Memorial Workshop

1

People involved on this project

Superconducting quantum circuits team

Collaboration with theoreticians from LPMMC Grenoble

Denis Basko

Permanents: Olivier Buisson, Cécile Naud, Wiebke Guichard, Nicolas Roch

Non-permanents: Rémy Dasonneville, Luca Planat, Javier Puertas-Martinez Yuriy Krupko, Farshad Foroughi, Sébastein Leger, Karthik Bharadwa

Frank Hekking souvenir

Frank Hekking souvenir

Etienne Dumur: « Il a été le meilleur professeur que j'ai eu: il etait juste incroyable! » « He was the best professor that l've ever had: he was just incredible! »

Motivation V-shape: quantum measurement

Wallraff et al, Nature 2004

Dispersive read-out drawbacks:

- Purcell effect
- weak photon number

VEEL Motivation V-shape: quantum measurement

Motivation V-shape: quantum measurement

Transmon qubit Ancilla mode

Longitudinal coupling with large g_{zz} ($g_{zz}/2\pi \sim 60$ MHz)

neel.cnrs.fr

E. Dumur et al., PRB (2015)

The 3D V-shaped transmon

The 3D V-shaped transmon

The 3D V-shaped transmon

Cavity-Ancilla spectroscopy

neel.cnrs.fr

Logical Qubit properties

Measurement photon induced relaxation

Effective dispersive coupling

 $H_{RWA} = \frac{1}{2} \eta \omega_{qb} \sigma_z + \eta \omega_a (a^+ a + \delta_a a^+ a a^+ a) + \eta g_{zz} \sigma_z a^+ a$

Qubit readout fidelity

ÉFI

Conclusion

Work in progress to reach large fidelity...