Thermal drag in capacitively-coupled metallic islands

Fabio Taddei
NEST, NANO-CNR & Scuola Normale Superiore, Pisa, Italy

Bibek Bhandari (SNS & NEST, Pisa, Italy)
Paolo Erdman (SNS & NEST, Pisa, Italy)
Giuliano Chiriacò (Columbia University, New York, USA)
Rosario Fazio (ICTP Trieste & SNS Pisa, Italy)

January 29th 2018, Les Houches
Frank Hekking memorial workshop
Coulomb drag

- Two electrically isolated conductors

- Only upper conductor is biased
- Current is **dragged** in lower if they are coupled via the **Coulomb interaction** (energy and momentum transfer)

- Layered systems (2DEG, graphene)
- 1D wires
- QH edge states
- ...
Coulomb drag

0D, single-electron systems

- Single level QD, broken detail balance (energy-dependent lead couplings)
 Sánchez, Lopez, Sánchez, Büttiker (2010)
 Moldoveanu, Tanatar (2009)

Experiment, QD

- Graphene-based QD
 Volk et al. (2015)
 Bischoff et al. (2016)

- Lithographically-patterned QD
 Keller et al. (2016)

- Cotunnelling is crucial
 Kaasbjerg, Jauho (2016)
Coulomb drag

- Energy harvesting from thermal/voltage fluctuations, thermocouple heat engine

\[T_1 = T_2 \]

- energy-dependence and asymmetry of lead coupling essential

Sánchez, Büttiker (2011)
Sothmann, Sánchez, Jordan, Büttiker (2012)
Sánchez, Sothmann, Jordan, Büttiker (2013)
Sothmann, Sánchez, Jordan (2015)
Daré, Lombardo (2017)
Whitney, Sánchez, Haupt, Splettstoesser (2016)

Hartmann, Pfeffer, Höfling, Kamp, Wordchech (2015)
Thierschmann, Arnold, Mittermüller, Maier, Heyn, Hansen, Buhmann, Molemkamp (2015)
Thermal drag

* Capacitively-coupled **metallic islands**, lead coupling energy-independent

Koski, Kutvonen, Khaymovich, Ala-Nissila, Pekola (2015)
Capacitively-coupled metallic islands

- **Coulomb-blockade regime**
- **Lead-island couplings are energy-independent**
- **Sequential tunneling**

- No dragged charge current, even for \(R_{L2} \neq R_{R2} \)
- Finite dragged heat current for \(R_{L2} \neq R_{R2} \)
Capacitively-coupled metallic islands

Electrostatic energy

\[
U(n_1, n_2) = E_{C,1} (n_1 - n_{x1})^2 + E_{C,2} (n_2 - n_{x2})^2 + E_I (n_1 - n_{x1}) (n_2 - n_{x2})
\]

\[
n_{x1} = V_{g1} \frac{C_g}{e}
\]

\[
n_{x2} = V_{g2} \frac{C_g}{e}
\]

Inter-island interaction energy controlled by \(C_I \)

Electrostatic energy change for transitions in lower island

\[
\delta U_2(n_1, n_2) = U(n_1, n_2 + 1) - U(n_1, n_2)
\]

Depends on the charge state in island 1
Capacitively-coupled metallic islands

- Dragged heat current results from **energy transferred** from drive circuit, through this mechanism.

\[
\begin{align*}
\delta U_2(0,0) &= E_C(1 - 2n_{x2}) - E_1 n_{x1}, \\
\delta U_2(1,0) &= E_C(1 - 2n_{x2}) + E_1 (1 - n_{x1}),
\end{align*}
\]

- Heat current associated to this processes: \(E_1 \)

- Heat currents are modulated through gate voltages
Capacitively-coupled metallic islands

Dependence on gate voltage

- Width independent of \(E_I \), but controlled by temperature
- Maximum occurs in the symmetric energy configuration

\[
E_I = 0.4E_C \\
k_B T = 0.05E_C \\
k_B \Delta T = 0.08E_C \\
R_{L1} = R_{R1} = R_{L2} = 5R_Q \\
R_{R2} = 10R_Q
\]

\[
I_0^{(h)} = e^2/(4C^2R)
\]
Capacitively-coupled metallic islands

Sequential tunnelling, small bias

expansion in $\Delta T/T$

$$I_{\text{drag}}^{(h)} = \frac{\xi R_\parallel}{6 e^2 R} \left[\frac{1}{R_{L2}} - \frac{1}{R_{R2}} \right] \text{csch} \xi \left[2 \xi \left(\frac{\pi^2}{4} + \xi^2 \right) \text{csch} \xi - \left(\frac{\pi^2}{2} + 3 \xi^2 \right) \text{sech} \xi \right] \left(k_B \Delta T \right)^2$$

\checkmark Second order in ΔT

$n_{x1} = n_{x2} = \frac{1}{2}$

$\xi = \frac{E_I}{4k_B T}$

expansion in eV/E_C

$$I_{\text{drag}}^{(h)} = \frac{\xi R_\parallel}{16 R} \left[\frac{1}{R_{L2}} - \frac{1}{R_{R2}} \right] \text{csch} \xi \left[\xi \text{csch} \xi - \text{sech} \xi \right] V^2$$

\checkmark Second order in V
Capacitively-coupled metallic islands

- Sequential tunnelling, dependence on inter-island coupling

![Graph showing sequential tunnelling with curves for different values of \(k_B \Delta T \) and \(eV \).]

- Maximal for intermediate values
- Position of the maximum obtained from analytics
- Deviation due to \(T \) not small

\[I_0^{(h)} = \frac{e^2}{4C^2R} \]

\[E_I^{\text{max}} \approx 8.5k_B T \]

\[E_I^{\text{max}} \approx 5.5k_B T \]
Capacitively-coupled metallic islands

- Sequential tunnelling, drag-drive comparison

- Temperature-biased case: \(I_{R2}^{(h)} < I_{R1}^{(h)} \)

- Voltage-biased case: \(I_{R2}^{(h)} > I_{R1}^{(h)} \)

- Larger heat current in the drag circuit for large interaction
Capacitively-coupled metallic islands

- Cotunnelling contributions, large bias

- Non-trivial contributions
- Quadratic dependence on V and ΔT
Capacitively-coupled metallic islands

- Energy-dependent couplings: superconductor

\[\Delta \ll E_C \]

\[n_{x2} < \frac{1}{2} \]

- Heat dragged to the right

\[n_{x2} \]
Conclusions

- Thermal drag in capacitively-coupled metallic islands

 - Sequential tunneling regime
 - Co-tunneling contributions

 - Analytic expressions for heat currents for small biases

 - Dependence on the inter-islands coupling

 - Energy-Dependent island-lead couplings