Thermal drag in capacitively-coupled metallic islands

Fabio Taddei

NEST, NANO-CNR & Scuola Normale Superiore, Pisa, Italy

<u>Bibek Bhandari</u> (SNS & NEST, Pisa, Italy) <u>Paolo Erdman</u> (SNS & NEST, Pisa, Italy) <u>Giuliano Chiriacò</u> (Columbia University, New York, USA) <u>Rosario Fazio</u> (ICTP Trieste & SNS Pisa, Italy)

January 29th 2018, Les Houches Frank Hekking memorial workshop

Coulomb drag

Two electrically isolated conductors

* only upper conductor is biased
 * current is dragged in lower if they are coupled via the
 Coulomb interaction (energy and momentum transfer)

- Iayered systems (2DEG, graphene)
- → 1D wires
- QH edge states

Review: Narozhny, Levchenko (2016)

Coulomb drag

> 0D, single-electron systems

sigle level QD, broken detail balance (energy-dependent lead couplings)

Sánchez, Lopez, Sánchez, Büttiker (2010) Moldoveanu, Tanatar (2009)

Experiment, QD

graphene-based QD

Volk et al. (2015) Bischoff et al. (2016)

Iithographically-patterned QD Keller et al. (2016)

***** cotunnelling is crucial Kaasbjerg, Jauho (2016)

National Enterprise for nanoScience and nanoTechnology

Keller et al. (2016)

Coulomb drag

Energy harvesting from thermal/voltage fluctuations, thermocouple heat engine Sánchez Büttiker (2011)

Sánchez, Büttiker (2011) Sothmann, Sánchez, Jordan, Büttiker (2012) Sánchez, Sothmann, Jordan, Büttiker (2013) Sothmann, Sánchez, Jordan (2015) Daré, Lombardo (2017) Whitney, Sánchez, Haupt, Splettstoesser (2016)

* energy-dependence and asymmetry of lead coupling essential

Hartmann, Pfeffer, Höfling, Kamp, Wordchech (2015) Thierschmann, Arnold, Mittermüller, Maier, Heyn, Hansen, Buhmann, Molemkamp (2015)

Thermal drag

* Capacitively-coupled **metallic islands**, lead coupling energy-independent

Koski, Kutvonen, Khaymovich, Ala-Nissila, Pekola (2015)

- Coulomb-blockade regime
- * Lead-island couplings are energy-independent
- Sequential tunneling
- Modragged charge current, even for

Finite dragged heat current for

 $\mathcal{R}_{L2} \neq \mathcal{R}_{\text{R2d} \, \text{Enterprise for nano} \textbf{S}_{\text{cience and nano} \textbf{T}_{\text{echnology}}}$

Electrostatic energy

$$U(n_{1}, n_{2}) = E_{C,1} (n_{1} - n_{x_{1}})^{2} + E_{C,2} (n_{2} - n_{x_{2}})^{2} + E_{I} (n_{1} - n_{x_{1}}) (n_{2} - n_{x_{2}})$$

$$n_{x1} = V_{g1} \frac{C_{g}}{e}$$

$$n_{x2} = V_{g2} \frac{C_{g}}{e}$$
inter-island interaction energy controlled by C_{I}

***** Electrostatic energy change for transitions in lower island

$$\delta U_2(n_1, n_2) = U(n_1, n_2 + 1) - U(n_1, n_2)$$

depends on the charge state in island 1

In Dragged heat current results from energy transferred from drive circuit, through this mechanism

 \blacksquare Heat current associated to this processes: E_{I}

Heat currents are modulated through gate voltages

 $\ensuremath{\ensuremath{\boxtimes}}$ Width independent of E₁, but controlled by temperature $\ensuremath{\boxtimes}$ Maximum occurs in the symmetric energy configuration

Sequential tunnelling, small bias

expansion in
$$\Delta T/T$$

 $I_{\rm drag}^{(h)} = \frac{\xi \mathcal{R}_{\parallel}}{6e^2 \mathcal{R}} \left[\frac{1}{\mathcal{R}_{\rm L2}} - \frac{1}{\mathcal{R}_{\rm R2}} \right] \operatorname{csch} \xi \left[2\xi \left(\frac{\pi^2}{4} + \xi^2 \right) \operatorname{csch} \xi - \left(\frac{\pi^2}{2} + 3\xi^2 \right) \operatorname{sech} \xi \right] (k_B \Delta T)^2$
 $\overleftarrow{} Second order in \Delta T$
 $\xi = \frac{E_{\rm I}}{4k_B T}$

expansion in eV/E_C

$$I_{\rm drag}^{\rm (h)} = \frac{\xi \mathcal{R}_{\parallel}}{16\mathcal{R}} \left[\frac{1}{\mathcal{R}_{\rm L2}} - \frac{1}{\mathcal{R}_{\rm R2}} \right] \operatorname{csch} \xi \left[\xi \operatorname{csch} \xi - \operatorname{sech} \xi \right] V^2$$

 $\ensuremath{\underline{\mathsf{S}}}$ Second order in V

Sequential tunnelling, dependence on inter-island coupling

thin curves ---> analytical
thick curves ---> numerical

 $I_0^{(\mathrm{h})} = e^2 / (4C^2 \mathcal{R})$

 $E_{\rm I}^{\rm max} \simeq 8.5 k_B T$ $E_{\rm I}^{\rm max} \simeq 5.5 k_B T$

Image: Deviation due to T not small

- Sequential tunnelling, drag-drive comparison
 - **I** Temperature-biased case: $I_{R2}^{(h)} < I_{R1}^{(h)}$
- \blacksquare Voltage-biased case: $I_{R2}^{(h)} > I_{R1}^{(h)}$

Cotunnelling contributions, large bias

Solution Non-trivial contributions **Solution** Quadratic dependence on V and ΔT

Energy-dependent couplings: superconductor

Finite dragged charge

Conclusions

> Thermal drag in capacitively-coupled metallic islands

Sequential tunneling regime
Co-tunneling contributions

* Analytic expressions for heat currents for <u>small</u> <u>biases</u>

***** Dependence on the inter-islands coupling

Energy-Dependent island-lead couplings