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Motivation
Physical system
1D Finite wires

Finite wires and ring

Coupled finite wires and ring

Wires

Infinite 1D coupled wires have been previously
investigated showing dissipation [1]

[1] C. L. Kane, M, P. A. Fisher, Phys. Rev. B 46
15233 (1992); G. Schön, A. D. Zaikin, Phys. Reports
198, 237-412 (1990)

Rings

Closed loops present new possibilities, especially for
studying current dynamics and superfluidity [2]

[2] M. Cominotti, et. al., Phys. Rev. Lett. 113,
025301 (2014); D. Aghamalyan, et. al., New J. Phys.
17 045023 (2015)
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Motivation
Physical system
1D Finite wires

Luttinger liquid Tonks-Girardeau

1D Finite wires with strong barrier

Luttinger Hamiltonian

HLL± =
h̵vK

2

±L

∫
0

dx [(∂xφ±(x , t))
2
+

1

K 2
(∂xθ±(x , t))

2
]
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Hb = EJ cos (φ+(0) − φ−(0))
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Luttinger liquid Tonks-Girardeau

1D Finite wires with strong barrier

Effective Hamiltonian

Ĥ =

Quantum particle

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

h̵2

2ML2
N̂2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“Potential term”

− EJ cos (φ̂0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“Nonlinear Kinetic term”

+

Bath

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∑
µ≥1

[
P̂2
µ

2M
+

1

2
MΩ2

µQ̂
2
µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“Harmonic bath”

+

Interaction

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
√

2h̵

ML
N̂P̂µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“Coupling”

+
h̵2

ML2
N̂2

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
“Renormalization”

]
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Q̂µ+

P̂µ+

Q̂µ−

P̂µ−

φ̂0 = φ̂0+ − φ̂0+

N̂ = (N̂+ − N̂+)/2

M =
h̵K

2πvL
=

K 2

2π2N0
m Ωµ = vkµ



Motivation
Physical system
1D Finite wires

Luttinger liquid Tonks-Girardeau

Classical limit results within the Luttinger liquid approach

Quantum particle
coupled to a bathÔ⇒

Quantum Langevin
equation of motion

Classical limit shows the main dynamical features
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1D Finite wires

Luttinger liquid Tonks-Girardeau

Exact Tonks-Girardeau method
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ωTG =
1

Nex

Nex/2

∑
n=−Nex/2+1

ωN+2n
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