Damping of Josephson oscillations in strongly correlated one-dimensional atomic gases

J. Polo¹, V. Ahufinger², F. W. J. Hekking¹, A. Minguzzi¹

¹Université Grenoble Alpes/CNRS, LPMMC, F-38000 Grenoble, France ²Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain

Frank Hekking Memorial Workshop

January 28th, 2018

Finite wires and ring

 $U_0\delta(x)$

Coupled finite wires and ring

 C. L. Kane, M, P. A. Fisher, Phys. Rev. B 46 15233 (1992); G. Schön, A. D. Zaikin, Phys. Reports 198, 237-412 (1990)

Rings

Closed loops present new possibilities, especially for studying current dynamics and superfluidity [2]

 M. Cominotti, et. al., Phys. Rev. Lett. 113, 025301 (2014); D. Aghamalyan, et. al., New J. Phys. 17 045023 (2015)

Finite wires and ring

Coupled finite wires and ring

Infinite 1D coupled wires have been previously investigated showing dissipation [1]

 C. L. Kane, M, P. A. Fisher, Phys. Rev. B 46 15233 (1992); G. Schön, A. D. Zaikin, Phys. Reports 198, 237-412 (1990)

Rings

Closed loops present new possibilities, especially for studying current dynamics and superfluidity [2]

 M. Cominotti, et. al., Phys. Rev. Lett. 113, 025301 (2014); D. Aghamalyan, et. al., New J. Phys. 17 045023 (2015)

Finite wires and ring

Coupled finite wires and ring

Infinite 1D coupled wires have been previously investigated showing dissipation [1]

 C. L. Kane, M, P. A. Fisher, Phys. Rev. B 46 15233 (1992); G. Schön, A. D. Zaikin, Phys. Reports 198, 237-412 (1990)

Rings

Closed loops present new possibilities, especially for studying current dynamics and superfluidity [2]

 M. Cominotti, et. al., Phys. Rev. Lett. 113, 025301 (2014); D. Aghamalyan, et. al., New J. Phys. 17 045023 (2015)

Finite wires and ring

Coupled finite wires and ring

Infinite 1D coupled wires have been previously investigated showing dissipation [1]

 C. L. Kane, M, P. A. Fisher, Phys. Rev. B 46 15233 (1992); G. Schön, A. D. Zaikin, Phys. Reports 198, 237-412 (1990)

Rings

Closed loops present new possibilities, especially for studying current dynamics and superfluidity [2]

M. Cominotti, et. al., Phys. Rev. Lett. 113, 025301 (2014); D. Aghamalyan, et. al., New J. Phys. 17 045023 (2015)

Finite wires and ring

Coupled finite wires and ring

Infinite 1D coupled wires have been previously investigated showing dissipation [1]

 C. L. Kane, M, P. A. Fisher, Phys. Rev. B 46 15233 (1992); G. Schön, A. D. Zaikin, Phys. Reports 198, 237-412 (1990)

Rings

Closed loops present new possibilities, especially for studying current dynamics and superfluidity [2]

M. Cominotti, et. al., Phys. Rev. Lett. 113, 025301 (2014); D. Aghamalyan, et. al., New J. Phys. 17 045023 (2015)

1D Finite wires with strong barrier

1D Finite wires with strong barrier

J. Polo, et al. (LPMMC)

 \times

Motivation Physical system 1D Finite wires

Luttinger liquid

Tonks-Girardeau

Classical limit results within the Luttinger liquid approach

Classical limit shows the main dynamical features

Luttinger liquid

Tonks-Girardeau

Exact Tonks-Girardeau method

J. Polo, et al. (LPMMC)

 ω_{TG}