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We investigate a quadratic-quartic anharmonic oscillator formed by a potential well between two

potential barriers. We realize this novel potential with a dc SQUID at near-zero current bias and flux bias

near half a flux quantum. Escape out of the central well can occur via tunneling through either of the two

barriers. We find good agreement with a generalized double-path macroscopic quantum tunneling theory.

We also demonstrate an ‘‘optimal line’’ in current and flux bias along which the oscillator, which can be

operated as a phase qubit, is insensitive to decoherence due to low-frequency current fluctuations.
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Superconducting devices, based on the nonlinearity of
the Josephson junction (JJ), exhibit a wide variety quantum
phenomena. During the last decade, inspired by macro-
scopic quantum tunneling (MQT) studies [1], quantum
dynamics of the current biased JJ, dc SQUID and the
rf SQUID phase qubit have been extensively studied [2–
6]. In each of these devices, dynamics are analogous to
those of a quantum particle in a quadratic-cubic potential.
The flux qubit [7], realized by three or four JJs in a loop, is
described by a double well potential.

We study a new potential shape called hereafter a ‘‘cam-
elback’’ double barrier potential, shown in Fig. 1(c). This
potential is obtained using the dc SQUID circuit shown in
Fig. 1(a) in a new way. Characteristics including depth and
relative barrier height are controlled by the SQUID current
bias Ib and flux bias!ext. There is an ‘‘optimal line’’ in the
plane (Ib, !ext) along which the barrier heights are equal
and anharmonicity is quartic. We investigate the dynamics
of the quantum system formed from the two lowest energy
levels of the central well.

A dc SQUID circuit has 2 degrees of freedom corre-
sponding to the phase differences !1 and!2 across its two
JJs. Dynamics are analogous to those of a particle of mass
m ¼ 2Cð!0=2"Þ2 in the 2D potential [8,9]

Uðx; yÞ ¼ U0½% cosx cosy% sxþ bðy% ybÞ2

% # sinx siny% $sy': (1)

Here x ¼ ð!1 þ!2Þ=2, y ¼ ð!1 %!2Þ=2, U0 ¼
Ic!0=2", b ¼ !0="LIc, # ¼ ðIc2 % Ic1Þ=Ic, $ ¼ ðL2 %
L1Þ=L, Ic ¼ Ic1 þ Ic2, Ic1, and Ic2 are the critical currents
of the two junctions, L1 and L2 are the geometric induc-
tances of the arms of the SQUID loop, L ¼ L1 þ L2, C is
the capacitance of each junction, and !0 ¼ h=2e is the
quantum of flux. The external control parameters enter
through yb ¼ "!ext=!0 and s ¼ Ib=Ic. For our sample,

Ic ¼ 11:22 %A, C ¼ 250:3 fF, b ¼ 3:05, $ ¼ 0:72, and
# ¼ 0:0072.
Stable, stationary states correspond to minima of

Uðx; yÞ. There can exist one or more minima families
corresponding to distinct fluxoid states ½n!0'. For
each, when s exceeds a flux dependent critical value
sc½n!0'ðybÞ, the related minima disappear. For small b,
the parabolic term in Uðx; yÞ is shallow, and there can be
many fluxoid states. For b ( 1=", as in our case, the para-
bolic term is steep and there is only one stable fluxoid state
except in a small region around !ext=!0 ) 0:5 (mod 1)
where there are two states with opposite circulating cur-
rents. Hereafter we focus on this region.
In general, dynamics is described by 2D motion in the

potential. In our device, motion is well approximated as 1D
along the minimum energy path which connects minima
and saddle points [black line in Fig. 1(b)]. A large cur-
vature in the orthogonal direction confines the system to
this path. For example, at the ½0!0' minima in Fig. 1(b),

the oscillation frequency along the path is !px *ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@2U=@x2Þ=m

p
¼ 2"+ 15:4 GHz, whereas !py ¼ 2"+

104 GHz. We parametrize the path with the phase length z.
UðzÞ in Fig. 1(c) depicts the camelback potential shape we
are investigating. In a typical experiment, the system is
initialized in the central well (½0!0' state). The system can
escape via tunneling through the barriers in either of the
two physically distinct directions to the ½%1!0' state.
In the symmetric case, the potential near the central

minimum will be harmonic with a quartic perturbation.
More generally, the Hamiltonian for small oscillations in
UðzÞ is Ĥ ¼ @!pðP̂2 þ Ẑ2Þ=2% &@!pẐ

3 % '@!pẐ
4.

Here !p is the zero amplitude oscillation frequency in

the direction of minimum curvature, and Ẑ ¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m!p=@q

and P̂ ¼ p=
ffiffiffiffiffiffiffiffiffiffiffiffiffi@!pm

p
are the reduced position and corre-

sponding momentum operators. Treating the anharmonic

PRL 102, 097004 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

6 MARCH 2009

0031-9007=09=102(9)=097004(4) 097004-1 ! 2009 The American Physical Society

terms as perturbations, to second order the transition en-
ergy between levels n! 1 and n is h!n!1;n ¼ @!pð1!
n!Þ, where the anharmonicity is ! ¼ 15

2 "
2 þ 3#.

We have calculated the escape probability for the camel-
back potential with a double escape path in the quantum
limit using the instanton formalism [10]. For a duration"t,
it reads PescðIb;#extÞ ¼ 1! e!ð$Rþ$LÞ"t, where $R;L ¼
AR;L!p

ffiffiffiffiffiffiffiffiffiffi
NR;L

p
exp½!BR;LNR;L'. Here R and L refer to the

right and left barriers. NR;L ¼ "UR;L=@!p are the normal-

ized barrier heights. The general expressions for AR;L, and
BR;L depend on the potential shape. In the symmetric case
where "ðIb;#extÞ ¼ 0, the potential is quadratic quartic,

AR;L ¼ 25=2$!1=2, and BR;L ¼ 16=3. Far from this sym-
metric line the potential is quadratic cubic, the escape rate
through one barrier is dominant (e.g., $L ¼ 0), and we

retrieve the standard MQT situation (# ¼ 0): AR ¼
63=2$!1=2 and BR ¼ 36=5 [1].

A schematic of our experimental setup is shown in
Fig. 1(a). Our sample was fabricated at Physikalisch-

Technische Bundesanstalt using a Nb=AlOx=Nb trilayer
process with SiO2 dielectric [11]. The two 5 %m2 junc-
tions are embedded in a 10( 10 %m2 square loop.
Figure 2(a) shows the escape lines, I50% versus #ext.

These data were obtained with a standard technique in
which Ib pulses of varying amplitude are applied and a
dc voltage detected across the SQUID when it switches to
its voltage state. With this scheme there is no direct in-
dication of multiply stable flux states. In Fig. 2(b) we use a
novel technique to measure the overlapping escape lines of
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FIG. 2 (color online). Ground-state escape. (a) Escape lines of
three fluxoid states as measured by I50%, the amplitude of a
60 %s Ib pulse that yields Pesc ¼ 50% to the voltage state of the
SQUID. Data (symbols), and standard MQT theory fit (solid
lines). Here ## ¼ 0, #ext ¼ #dc. The calculated optimal line
Iopb ð#extÞ for the ½0#0' state is indicated by the dash-dotted line.
(b) Overlapping escape lines in the region #ext ’ !#0=2. Data
(symbols), and generalized MQT theory fit (solid lines), as
measured by #50%, where #&% is the total applied flux #ext ¼
#dc þ ## that yields Pesc ¼ &% from the ½!1#0' to the ½0#0'
state (right cusp) or vice versa (left cusp). ## is the amplitude of
a 100 ns flux pulse. The cusps occur at a nonzero current bias
Icuspb ’ )'Ic ¼ )81 nA due to the critical current asymmetry
'. The horizontal separation of the cusps scales precisely with
1=b. The upper (lower) dash-dotted line indicates the calculated
Iopb ð#extÞ for the ½0#0' ð½!1#0'Þ state. The points S, W, M, and
R indicate the starting, working, quantum measurement, and
readout points for a typical camelback phase qubit experiment.
(c) Width "# ¼ j#80% !#20%j of the ½0#0' ! ½!1#0'
ground-state escape, measurements (pointsþ lines), and gener-
alized MQT theory with (solid line) and without (dash-dotted
line) 9 nA rms low-frequency current noise. The location of the
dip near the maximum "# (see inset) corresponds to the point
where symmetry leads to a reduction in sensitivity to noise.
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FIG. 1 (color online). Experimental setup. (a) Circuit layout.
The two small white squares in the central loop are the SQUID
JJs. Connected on the right are current bias and voltage leads.
These are heavily filtered at various stages of the cryostat,
including the on-chip low-pass filter formed by Loc ¼ 10 nH
and Coc ¼ 200 pF [14]. Fast flux pulses ## inductively couple
via the on-chip loop to the left of the SQUID. Microwave
excitation is applied via an on-chip loop which couples induc-
tively to the current bias leads [15]. An off-chip coil provides a
dc flux bias #dc. The total externally applied flux is #ext ¼
#dc þ ##. The SQUID chip is enclosed in a copper box
thermally anchored to the mixing chamber of a dilution refrig-
erator with a 30 mK base temperature. The cryostat is sur-
rounded by superconducting Pb, % metal, and soft iron
shielding. (b) Full 2D potential for b ¼ 3:05, ( ¼ 0:72, ' ¼
0, #ext ¼ !0:508#0, Ib ¼ 0, showing the families of minima
associated with the ½0#0' and ½!1#0' fluxoid states. The black
line follows the minimum energy path. Note the difference in the
x and y scales. (c) Potential along the minimum energy path,
parametrized by the path length.
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FIG. 2 (color online). Ground-state escape. (a) Escape lines of
three fluxoid states as measured by I50%, the amplitude of a
60 %s Ib pulse that yields Pesc ¼ 50% to the voltage state of the
SQUID. Data (symbols), and standard MQT theory fit (solid
lines). Here ## ¼ 0, #ext ¼ #dc. The calculated optimal line
Iopb ð#extÞ for the ½0#0' state is indicated by the dash-dotted line.
(b) Overlapping escape lines in the region #ext ’ !#0=2. Data
(symbols), and generalized MQT theory fit (solid lines), as
measured by #50%, where #&% is the total applied flux #ext ¼
#dc þ ## that yields Pesc ¼ &% from the ½!1#0' to the ½0#0'
state (right cusp) or vice versa (left cusp). ## is the amplitude of
a 100 ns flux pulse. The cusps occur at a nonzero current bias
Icuspb ’ )'Ic ¼ )81 nA due to the critical current asymmetry
'. The horizontal separation of the cusps scales precisely with
1=b. The upper (lower) dash-dotted line indicates the calculated
Iopb ð#extÞ for the ½0#0' ð½!1#0'Þ state. The points S, W, M, and
R indicate the starting, working, quantum measurement, and
readout points for a typical camelback phase qubit experiment.
(c) Width "# ¼ j#80% !#20%j of the ½0#0' ! ½!1#0'
ground-state escape, measurements (pointsþ lines), and gener-
alized MQT theory with (solid line) and without (dash-dotted
line) 9 nA rms low-frequency current noise. The location of the
dip near the maximum "# (see inset) corresponds to the point
where symmetry leads to a reduction in sensitivity to noise.
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FIG. 1 (color online). Experimental setup. (a) Circuit layout.
The two small white squares in the central loop are the SQUID
JJs. Connected on the right are current bias and voltage leads.
These are heavily filtered at various stages of the cryostat,
including the on-chip low-pass filter formed by Loc ¼ 10 nH
and Coc ¼ 200 pF [14]. Fast flux pulses ## inductively couple
via the on-chip loop to the left of the SQUID. Microwave
excitation is applied via an on-chip loop which couples induc-
tively to the current bias leads [15]. An off-chip coil provides a
dc flux bias #dc. The total externally applied flux is #ext ¼
#dc þ ##. The SQUID chip is enclosed in a copper box
thermally anchored to the mixing chamber of a dilution refrig-
erator with a 30 mK base temperature. The cryostat is sur-
rounded by superconducting Pb, % metal, and soft iron
shielding. (b) Full 2D potential for b ¼ 3:05, ( ¼ 0:72, ' ¼
0, #ext ¼ !0:508#0, Ib ¼ 0, showing the families of minima
associated with the ½0#0' and ½!1#0' fluxoid states. The black
line follows the minimum energy path. Note the difference in the
x and y scales. (c) Potential along the minimum energy path,
parametrized by the path length.
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Macroscopic quantum tunneling in quartic and sextic potentials: Application to a phase qubit 
ND and Frank Hekking, Phys. Rev. B 85, 104522 (2012)
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Hybrid quantum-classical algorithm: clustering
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