

Fractional quantum Hall effect and Wigner crystallization in suspended graphene

Manohar Kumar, Antti Laitinen, and Pertti Hakonen Low Temperature Laboratory, Aalto University, Finland

Overview

Mechanical resonances and FQH states

Quantum Hall effect

Quantized edge conductance

$$\succ \ \sigma_{xy} = \frac{l}{V_{xy}} = \nu \frac{e^2}{h}$$

- > Filling factor: $\nu = \frac{nh}{eB}$
- Dipping diagonal resistivity

$$\blacktriangleright \rho_{xx} = \frac{V_{xx}}{I} \rightarrow 0$$

Insulating bulk

•
$$E_n = \hbar \omega_c (n + \frac{1}{2}), \quad \omega_c = \frac{eB}{m}$$

K. v. Klitzing, G. Dorda, and M. Pepper Phys. Rev. Lett. **45**, 494 (1980)

In the extreme limit: Formation of new particles

Aalto-yliopisto

D. C. Tsui, H. L. Stormer, and A. C. Gossard Phys. Rev. Lett. **48**, 1559 (1982)

Composite fermions

• Real electron + 2m fluxes ⇒ "composite fermion" (CF)

Real and effective fields

 $B^* = B - 2m\phi_0 n$

Real and effective filling factors

$$u = rac{n\phi_0}{B} \qquad
u^* = rac{n\phi_0}{B^*}$$

J. K. Jain, Phys. Rev. Lett. **63**, 199202 (1989). Jain, http://www.personal.psu.edu/jkj2/cf-fqhe.pdf

 $2m\nu^* + 1$

The original idea of Wigner

Potential energy per particle due to Coulomb interaction:

$$E_{\rm pot}/N_{\rm e} \approx e^2/4\pi\epsilon_0 r_0 \propto n_{\rm e}^{1/D}$$

Kinetic energy per particle:

$$E_{\rm kin}/N_{\rm e} \propto \frac{\hbar^2 k_F^2}{2m} \propto r_0^{-2} \propto n_{\rm e}^{2/D}$$

Dimensionless parameters:

Aalto Universitv

$$\Gamma = rac{E_{
m pot}}{E_{
m kin}} \propto n_{
m e}^{-1/D}$$

Shear modulus: $\frac{0.245e^2n^{3/2}}{4\pi\varepsilon_0\varepsilon_a}$

FQH states in a graphene Corbino device

Corbino geometry

- Corbino disk in B-field
 - Counter-rotating edge states

 σ_{xy}

BX

Suspended Corbino samples

Quantum Hall effect

Quantum Hall effect

M. Kumar, et al., arXiv:1611.02742 (2016).

FQHE – composite fermions

- T-dependence
 - Fractional states
 - $\succ \sigma_{xx} = \sigma_0 e^{\frac{-T_0}{2T}}$ $\succ \text{ Gaps } T_0 = 6\text{-1 K}$
 - $\nu = 1/2$
 - Fermi liquid with little T-dependence
 - Dirac particles

A. Laitinen, et al., PRB in press.

Unconventional fractional quantum Hall effect

- States in between Jain's sequence?
 - Interactions between CFs
 - FQHE of composite fermions

$$\nu = \frac{\nu_{CF}^*}{2m\nu_{CF}^* \pm 1}$$

$$\boldsymbol{\nu}_{CF}^* = \frac{4}{3} \quad \rightarrow \quad \boldsymbol{\nu} = \frac{4}{11} \approx 0.36$$

- Small gaps
 - Arrhenius fits at low *T*/high *T*
 - 2% of the 1/3 state gap

Aalto University

M. Kumar, A. Laitinen, and P. Hakonen, submitted. v

Wigner crystal – electron solid

Wigner crystallization in graphene

Experimental signatures

- 1. Insulating at DC, below T_c
- 2. IVs: thermal depinning
- 3. Oscillation modes around the pinning potential

Wigner Crystallization – conductance

- Small σ_{xx} > v = 0.14 - 0.20> $V_g = -0.3 \dots 1.5 V$
- Re-entrant behavior?

Wigner current-voltage characteristics

- Quantum tunneling at $\nu = 1/3$ (blue markers)
- Thermally activated depinning (red markers)

$$I_{W} = e^{*}f_{p}\left\{exp\left[-\frac{\overline{\Delta}-V/2N}{k_{B}T}\right] - exp\left[-\frac{\overline{\Delta}+V/2N}{k_{B}T}\right]\right\}$$

- $\overline{\Delta} = 180 \ \mu eV \approx 1.8 \ K$
- **N** = 6

F. Williams, et al., Phys. Rev. Lett. 66, 3285 (1991)

Pinning resonance

- Resonance at $f_p = 3$ GHz
- Domain size:

$$L = \sqrt{\frac{2\pi\mu}{neBf_p}} \approx 0.63 \ \mu m$$

Shear modulus $\mu = \frac{0.245e^2n^{3/2}}{4\pi\varepsilon_0\varepsilon_a}$

~30 crystallites

(PA)

Summary

FQH states

- Unconventional states: fractional CF states
- FQH states studied via mechanical resonances

 $-T_m \approx 1.5 \,\mathrm{K}$

Wigner crystal

- Solid electron crystal 100 e/crystallite
- Pinning resonance
- Depinning by bias
- Low conductance

> Future

- Current in edge states
- Cooper pair splitting
- Parafermions?

