

MANY PARTICLE SIGNATURE OF A MOBILITY EDGE IN A BICHROMATIC LATTICE

PHYSICAL REVIEW A 95, 033605 (2017)

Jacopo Settino

Frank Hekking Memorial Workshop, Les Houches, 28 Jen 2018

Incommensurability

What is a bichromatic lattice?

$V(x) = V_1 sin^2(k_1 x) + V_2 sin^2(k_2 x + \phi)$

Incommensurability

What is a bichromatic lattice?

Cold atomic gas

3

Phase Transition

Tight Binding Approximation $(V_1 \gg E_r)$ MAPPING ANDRÉ-AUBRY MODEL $\hat{H} = \Delta \sum_j \cos(2\pi\tau j) |j\rangle \langle j| - J \sum_j (|j+1\rangle \langle j| + |j\rangle \langle j+1|)$ Disorder Hopping Wannier states

Phase Transition

Mobility Edge

ANDRÉ-AUBRY NNN MODEL

Mobility Edge

"Is it possible to observe the presence of the mobility edge by looking at many-body measurable quantities?"

2

Many-body systems

- Noninteracting fermions
- Hardcore bosons

Non-interacting fermions

Reduced Single Particle Density Matrix

$$\rho_F(x,y) = \int dx_2 ... dx_N \Psi_F^*(x,...,x_N) \Psi_F(y,...,x_N)$$

Momentum distribution

$$n_F(k) = \frac{1}{2\pi} \int dx dy \exp^{ik(x-y)} \rho_F(x,y)$$

Non-interacting fermions

 E_f

Ferm Sea

N=15

N=65

Hardcore Bosons

Strogly interacting

 $U_{ii} = g \delta(x_i - x_j)$

$$\Psi_B = A \Psi_F \quad A = \prod_{1 \le i < j \le N} \operatorname{sgn}(x_i - x_j)$$

 $g \rightarrow oo$

Momentum distribution

THANK YOU!

Jacopo Settino

Frank Hekking Memorial Workshop, Les Houches, 28 Jen 2018