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Study correlation effects on transport properties of
heterostructures

... by combining density functional and many-body dynamical
mean field theory

. within the non-equilibrium Green's function approach
. as implemented, e.g., within the SMEAGOL package
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Scattering / NEGF approach to transport

ho —gEERE —> W

FIG. 1. Schematic diagram of the experimental configu-
ration for which an interacting Landauer formula for the
current is derived. Two leads, characterized by chemical poten-
tials p and pg, are connected to a mesoscopic region where
electrons may interact. If u; > pg, an electron current J will
flow from left to right.

developed by Landauer & Biittiker, Meir & Wingreen, ...

initial conditions — stationary currents
t— —o0: AV #£0, AT #0
lead — “molecule” — lead: non-interacting leads, simple coupling

e express currents I, I through the leads’ (equ.) distribution
functions and local properties of the “molecules”
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Scattering / NEGF approach to transport

consider total currents

coupling: ~ (VLchdc =+ h.C.), ~ (VRcc;dc + h.C.)
L = left, C = center, R = right

first step: I ~ tr (Ve Gie) ~ tr (VerGER)
general result:
I, = 2= [detr ([foT'" — frRI'F)(GR — G*) + [PF — T'F]GY)

special case: non-interacting or 'L = TR then:
In= 1 [de[fr(e) — fr(e)]T (e, ...)
T (e,...) = transmission probability = function of energy, ...

energy current: I = + [dee[fr(€) — fr(e)]T (e, ...)
including correlations via G, G4
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Towards a more realistic description

e combining DFT (GGA) studies (SMEAGOL) with DMFT
e model system / test case: Cu(111) | Co | Cu(111)
e include correlations within the Co plane

e determine spin-resolved transmission

0 DMFT supercell
'
'

L. Chioncel et al., 2015
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Electronic correlations: DMFT

Electron reservoir

Figure 1. Dynamical mean-field theory (DMFT) of correlated-electron solids replaces the full lattice of atoms and electrons
with a single impurity atom imagined to exist in a bath of electrons. The approximation captures the dynamics of electrons
on a central atom (in orange) as it fluctuates among different atomic configurations, shown here as snapshots in time. In the
simplest case of an s orbital occupying an atom, fluctuations could vary among |0), | 1), | 1), or | 11), which refer to an unoc-
cupied state, a state with a single electron of spin-up, one with spin-down, and a doubly occupied state with opposite spins.
In this illustration of one possible sequence involving two transitions, an atom in an empty state absorbs an electron from the

surrounding reservoir in each transition. The hybridization V, is the quantum mechanical amplitude that specifies how likely
a state flips between two different configurations.

Kotliar & D. Vollhardt, Physics Today 57(3), 53 (2004)
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Cu-Co-Cu heterostructure
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Left: Spin-resolved transmission: majority spins (upper panel), minority spins (middle
panel), and total (lower panel). Black dashed/red solid lines: GGA/GGA+DMFT
results. Right: Transmission spin polarization obtained within the GGA (black dashed)
and at 7' = 80 K (red dot dashed), T"= 200 K (blue solid). Coulomb and exchange
parameters: U = 3 eV, J = 0.9 eV. — Further results: transmission vs. U and J at
fixed T

L. Chioncel et al., 2015
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Correlations in a model half-metal
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e DMFT self-consistency:

R /Oﬁdr /Oﬁdr’cf,(f)ggl(r — 7o (7') + U/OﬁdT”T(T)nL(T)

1
Seﬁ—>QMC—>GU—>gg:iw+u—t2Gg—§aA

L. Chioncel et al., Phys. Rev. B 68, 144425 (2003)
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Correlations in bulk NiMnSb
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Uy LDA+DMFT self-consistency:

U =3¢V, J=0.9¢eV (on Mn)
T=300K;, M =39 ug!
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Im 24 (E) ~ (E — Ep)?
1-electrons: Fermi liquid

ImX (E)~ (E—Ep)*, x<2

l-electrons: Non-Quasi-Particle states -1.6

L. Chioncel et al., Phys. Rev. B 68, 144425 (2003)

10/15



Transport through Au-NiMnSb-Au

Transport

A
/

Interacting region

Lead Interface Bulk Interface Lead

Favorable configuration: Ni terminated (001) interface
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States near interfaces: DOS
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& DOS polarization not significant, due to strong hybridization of states near

interfaces !
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Spin-polarized transmission
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Spin-resolved transmissions. The dashed lines represent the GGA and the solid lines
the GGA+DMFT results. Black lines: majority spin transmission; red lines: minority
spin transmission. (a) Ni-termination, (b) MnSb-termination
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DOS versus transmission: minority spin
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Comparison of the minority spin density of states (upper panel), and the minority spin

transmission (lower panel): (a) Ni-terminated structure, (b) MnSb-terminated
structure

& Significant spin polarization in transmission despite electronic correlations !
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