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Goals, References

• Study correlation e�ects on transport properties of
heterostructures

• ... by combining density functional and many-body dynamical
mean �eld theory

• ... within the non-equilibrium Green's function approach

• ... as implemented, e.g., within the SMEAGOL package
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Scattering / NEGF approach to transport

• developed by Landauer & Büttiker, Meir & Wingreen, ...

• initial conditions → stationary currents

• t→ −∞: ∆V 6= 0, ∆T 6= 0

• lead � �molecule� � lead: non-interacting leads, simple coupling

• express currents In, Iε through the leads' (equ.) distribution
functions and local properties of the �molecules�
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Scattering / NEGF approach to transport

> consider total currents

> coupling: ∼ (VLCc
+
LdC + h.c.), ∼ (VRCc

+
RdC + h.c.)

L = left, C = center, R = right

> �rst step: In ∼ tr
(
VLCG

<
LC

)
∼ tr

(
VCRG

<
CR

)
> general result:

In = i
2h

∫
dε tr

(
[fLΓL − fRΓR](GR −GA) + [ΓL − ΓR]G<

)
• special case: non-interacting or ΓL = ΓR; then:
In = 1

h

∫
dε [fL(ε)− fR(ε)]T (ε, ...)

• T (ε, ...) = transmission probability = function of energy, ...

• energy current: Iε = 1
h

∫
dε ε [fL(ε)− fR(ε)]T (ε, ...)

• including correlations via GR, GA
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Towards a more realistic description

• combining DFT (GGA) studies (SMEAGOL) with DMFT

• model system / test case: Cu(111) | Co | Cu(111)

• include correlations within the Co plane

• determine spin-resolved transmission

Cu3
Cu2

Cu1 Cu4
Co

Scattering region 

DMFT supercell

LeadLead

L. Chioncel et al., 2015
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Electronic correlations: DMFT

full many-body Hamiltonian to a simpler, effective model
retains the essence of the physical phenomena one wants
to understand, but is itself a complicated problem. 

One of the simplest models of correlated electrons is
the Hubbard Hamiltonian, defined in equation 2b of box 2.
This Hamiltonian describes electrons with spin directions
s ⊂ R or A moving between localized states at lattice sites
i and j. The electrons interact only when they meet on the
same lattice site i. (The Pauli principle requires them to
have opposite spin.) The kinetic energy and the interac-
tion energy are characterized by the hopping term tij and
the local Coulomb repulsion U, respectively. These two

terms compete because the kinetic part favors the elec-
trons’ being as mobile as possible, while the interaction en-
ergy is minimal when electrons stay apart from each
other—that is, localized on atomic different sites. This
competition is at the very heart of the electronic many-
body problem. The parameters that determine the proper-
ties described by the Hubbard model are the ratio of the
Coulomb interaction U and the bandwidth W (W is deter-
mined by the hopping, tij), the temperature T, and the dop-
ing or number of electrons. 

The lattice structure and hopping terms influence the
ability of the electrons to order magnetically, especially in

54 March 2004    Physics Today http://www.physicstoday.org
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Figure 1. Dynamical mean-field theory (DMFT) of correlated-electron solids replaces the full lattice of atoms and electrons
with a single impurity atom imagined to exist in a bath of electrons. The approximation captures the dynamics of electrons
on a central atom (in orange) as it fluctuates among different atomic configurations, shown here as snapshots in time. In the
simplest case of an s orbital occupying an atom, fluctuations could vary among +0¬, +R¬, +A¬, or +RA¬, which refer to an unoc-
cupied state, a state with a single electron of spin-up, one with spin-down, and a doubly occupied state with opposite spins.
In this illustration of one possible sequence involving two transitions, an atom in an empty state absorbs an electron from the
surrounding reservoir in each transition. The hybridization Vn is the quantum mechanical amplitude that specifies how likely
a state flips between two different configurations.

In DFT, the basic quantity is the local electronic charge den-
sity of the solid, r(r). The total energy of the full, many-body

problem of interacting quantum mechanical particles is ex-
pressed as a functional of this density:

(1a)

The equation contains three parts: the kinetic energy of a
noninteracting system T[r]; the potential energy of the crys-
tal, Vext(r), plus the Hartree contribution to the Coulomb in-
teraction between the charges; and the rest, denoted as the
exchange and correlation energy term Exc. Minimizing the
functional results in the Kohn–Sham equations

(1b)

which have the form of one-particle Schrödinger equations
with a potential VKS(r). This Kohn–Sham potential represents
a static mean field of the electrons and has to be determined

from the self-consistency condition

(1c)

The Kohn–Sham equations serve as a reference system for
DFT because they yield the correct ground-state density via

(1d)

where f (ei) is the Fermi function. That is, although the
Kohn–Sham equations describe a noninteracting single-particle 
system, they give the correct density of the many-body inter-
acting system. Practical implementations require explicit, al-
beit approximate, expressions for Exc (for example, the local
density approximation obtained from the uniform electron
gas). Although the eigenvalues and eigenvectors of these
equations cannot be identified rigorously with the excitations
of the solid, if electrons are weakly correlated the energies ei
are often a very good starting point for computing the true ex-
citation spectra by perturbation theory in the screened
Coulomb interaction.

Box 1. Density Functional Theory
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Kotliar & D. Vollhardt, Physics Today 57(3), 53 (2004)
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Cu-Co-Cu heterostructure
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Left: Spin-resolved transmission: majority spins (upper panel), minority spins (middle
panel), and total (lower panel). Black dashed/red solid lines: GGA/GGA+DMFT
results. Right: Transmission spin polarization obtained within the GGA (black dashed)
and at T = 80 K (red dot dashed), T = 200 K (blue solid). Coulomb and exchange
parameters: U = 3 eV, J = 0.9 eV. � Further results: transmission vs. U and J at
�xed T

L. Chioncel et al., 2015
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Correlations in a model half-metal
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H = −t
∑
<ij>

∑
σ

(
ciσc

†
jσ + cjσc

†
iσ

)
+ U

∑
i

ni↑ni↓

U = 2 eV, W = 2 eV
∆ = 0.5 eV, T = 0.25 eV

• DMFT self-consistency:

Seff = −
∫ β

0

dτ

∫ β

0

dτ ′c†σ(τ)G−1
σ (τ − τ ′)cσ(τ ′) + U

∫ β

0

dτn↑(τ)n↓(τ)

Seff → QMC→ Gσ → Gσ = iω + µ− t2Gσ −
1

2
σ∆

L. Chioncel et al., Phys. Rev. B 68, 144425 (2003)
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Correlations in bulk NiMnSb

NiMnSb: prototypical half-metal, almost fully polarized; transport?
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LDA+DMFT self-consistency:
U = 3 eV, J = 0.9 eV (on Mn)
T = 300 K; M = 3.96 µB !
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′

Im Σ↑(E) ∼ (E − EF )2

↑-electrons: Fermi liquid

Im Σ↓(E) ∼ (E − EF )x , x < 2

↓-electrons: Non-Quasi-Particle states
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Transport through Au-NiMnSb-Au

Lead Interface Bulk Interface

Interacting region

Transport

Lead

Favorable con�guration: Ni terminated (001) interface
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States near interfaces: DOS
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slab. (a) Ni termination, (b) MnSb termi-
nation. Solid-blue line: LSDA; solid-red
line: LSDA+DMFT (U = 3 eV, J = 0.6
eV)

♣ DOS polarization not signi�cant, due to strong hybridization of states near

interfaces !
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Spin-polarized transmission
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Spin-resolved transmissions. The dashed lines represent the GGA and the solid lines
the GGA+DMFT results. Black lines: majority spin transmission; red lines: minority
spin transmission. (a) Ni-termination, (b) MnSb-termination
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DOS versus transmission: minority spin
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Comparison of the minority spin density of states (upper panel), and the minority spin
transmission (lower panel): (a) Ni-terminated structure, (b) MnSb-terminated
structure

♣ Signi�cant spin polarization in transmission despite electronic correlations !
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